57 research outputs found

    Deep Learning Solutions for TanDEM-X-based Forest Classification

    Full text link
    In the last few years, deep learning (DL) has been successfully and massively employed in computer vision for discriminative tasks, such as image classification or object detection. This kind of problems are core to many remote sensing (RS) applications as well, though with domain-specific peculiarities. Therefore, there is a growing interest on the use of DL methods for RS tasks. Here, we consider the forest/non-forest classification problem with TanDEM-X data, and test two state-of-the-art DL models, suitably adapting them to the specific task. Our experiments confirm the great potential of DL methods for RS applications

    Non-local methods for InSAR parameters estimation

    Get PDF
    In the thesis work the nonlocal paradigm has been investigated in the framework of Multitemporal SAR Interferometry, e.g. Differential Interferometry, Tomography, etc., and single InSAR pair, e.g. DEM generation. In the former, Adaptive Multi-Looking methods have been developed for the generation of interferometric data-stacks. Following the nonlocal approach, the proposed methods rely only on similar pixels according to a suitable similarity measure that exploits the stack's temporal information. An hybrid approach that jointly uses the nonlocal paradigm and transform domain filtering has been investigated for InSAR pair phase estimation. On the track of the BM3D and SARBM3D algorithms, different approaches to the filtering in the transform domain are investigated. Furthermore, a novel approach to the similarity computation and filtering, based on a relative-topography content of the interferometric phase rather than its absolute value, is proposed

    Phi-Net: Deep Residual Learning for InSAR Parameters Estimation

    Get PDF
    Nowadays, deep learning (DL) finds application in a large number of scientific fields, among which the estimation and the enhancement of signals disrupted by the noise of different natures. In this article, we address the problem of the estimation of the interferometric parameters from synthetic aperture radar (SAR) data. In particular, we combine convolutional neural networks together with the concept of residual learning to define a novel architecture, named Phi-Net, for the joint estimation of the interferometric phase and coherence. Phi-Net is trained using synthetic data obtained by an innovative strategy based on the theoretical modeling of the physics behind the SAR acquisition principle. This strategy allows the network to generalize the estimation problem with respect to: 1) different noise levels; 2) the nature of the imaged target on the ground; and 3) the acquisition geometry. We then analyze the Phi-Net performance on an independent data set of synthesized interferometric data, as well as on real InSAR data from the TanDEM-X and Sentinel-1 missions. The proposed architecture provides better results with respect to state-of-the-art InSAR algorithms on both synthetic and real test data. Finally, we perform an application-oriented study on the retrieval of the topographic information, which shows that Phi-Net is a strong candidate for the generation of high-quality digital elevation models at a resolution close to the one of the original single-look complex data

    The Global Water Body Layer from TanDEM-X Interferometric SAR Data

    Get PDF
    The interferometric synthetic aperture radar (InSAR) data set, acquired by the TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) mission (TDM), represents a unique data source to derive geo-information products at a global scale. The complete Earth's landmasses have been surveyed at least twice during the mission bistatic operation, which started at the end of 2010. Examples of the delivered global products are the TanDEM-X digital elevation model (DEM) (at a final independent posting of 12 m × 12 m) or the TanDEM-X global Forest/Non-Forest (FNF) map. The need for a reliable water product from TanDEM-X data was dictated by the limited accuracy and difficulty of use of the TDX Water Indication Mask (WAM), delivered as by-product of the global DEM, which jeopardizes its use for scientific applications, as well. Similarly as it has been done for the generation of the FNF map, in this work, we utilize the global data set of TanDEM-X quicklook images at 50 m × 50 m resolution, acquired between 2011 and 2016, to derive a new global water body layer (WBL), covering a range from -60° to +90° latitudes. The bistatic interferometric coherence is used as the primary input feature for performing water detection. We classify water surfaces in single TanDEM-X images, by considering the system's geometric configuration and exploiting a watershed-based segmentation algorithm. Subsequently, single overlapping acquisitions are mosaicked together in a two-step logically weighting process to derive the global TDM WBL product, which comprises a binary averaged water/non-water layer as well as a permanent/temporary water indication layer. The accuracy of the new TDM WBL has been assessed over Europe, through a comparison with the Copernicus water and wetness layer, provided by the European Space Agency (ESA), at a 20 m × 20 m resolution. The F-score ranges from 83%, when considering all geocells (of 1° latitudes × 1° longitudes) over Europe, up to 93%, when considering only the geocells with a water content higher than 1%. At global scale, the quality of the product has been evaluated, by intercomparison, with other existing global water maps, resulting in an overall agreement that often exceeds 85% (F-score) when the content in the geocell is higher than 1%. The global TDM WBL presented in this study will be made available to the scientific community for free download and usage

    Analysis of offset-compensated nonlocal filtering for InSAR DEM generation

    No full text

    Situational Awareness of Large Infrastructures Using Remote Sensing: The Rome-Fiumicino Airport during the COVID-19 Lockdown

    Get PDF
    Situational awareness refers to the process of aggregating spatio-temporal variables and measurements from different sources, aiming to improve the semantic outcome. Remote Sensing satellites for Earth Observation acquire key variables that, when properly aggregated, can provide precious insights about the observed area. This article introduces a novel automatic system to monitor the activity levels and the operability of large infrastructures from satellite data. We integrate multiple data sources acquired by different spaceborne sensors, such as Sentinel-1 Synthetic Aperture Radar (SAR) time series, Sentinel-2 multispectral data, and Pleiades Very-High-Resolution (VHR) optical data. The proposed methodology exploits the synergy between these sensors for extracting, at the same time, quantitative and qualitative results. We focus on generating semantic results, providing situational awareness, and decision-ready insights. We developed this methodology for the COVID-19 Custom Script Contest, a remote hackathon funded by the European Space Agency (ESA) and the European Commission (EC), whose aim was to promote remote sensing techniques to monitor environmental factors consecutive to the spread of the Coronavirus disease. This work focuses on the Rome–Fiumicino International Airport case study, an environment significantly affected by the COVID-19 crisis. The resulting product is a unique description of the airport’s area utilization before and after the air traffic restrictions imposed between March and May 2020, during Italy’s first lockdown. Experimental results confirm that the proposed algorithm provides remarkable insights for supporting an effective decision-making process. We provide results about the airport’s operability by retrieving temporal changes at high spatial and temporal resolutions, together with the airplane count and localization for the same period in 2019 and 2020. On the one hand, we detected an evident change of the activity levels on those airport areas typically designated for passenger transportation, e.g., the one close to the gates. On the other hand, we observed an intensification of the activity levels over areas usually assigned to landside operations, e.g., the one close to the hangar. Analogously, the airplane count and localization have shown a redistribution of the airplanes over the whole airport. New parking slots have been identified as well as the areas that have been dismissed. Eventually, by combining the results from different sensors, we could affirm that different airport surface areas have changed their functionality and give a non-expert interpretation about areas’ usage
    • …
    corecore